Metals Mobilization in Bay-Delta Sediment Reuse

Metals in Sediments

- Most metals in aquatic sediments generally bound in solids
 - Cationic forms (Hg2+, Cu2+, etc)
 - Complexed by organic carbon
 - Bound as metal sulfides
- Stable as long as binding materials not altered

Sediments tell our history

SF Bay core to scale >

Unless disturbed, much of it stays in place

Stability of Metals

- Bound metals are stable
 - If reduction oxidation states not altered
 - Oxidation of organic matter
 - Oxidation of sulfides
- Stability of in place sediments helped by
 - Low diffusion rates in liquids in solids

Challenges of Sediment Reuse

- Sediments moved from largely anoxic environments to aerobic (surface) environments
 - Release of OC and sulfide bound metals
- Other redox transformations (mercury methylation)
 - Hg2+ -> CH3-Hg+
 - Changing from oxic back to anoxic

Metals Management Strategies

- Can keeping sediments underwater help?
 - Yes, sometimes
 - Sediment surface will still get oxidized
 - Subsurface will see much less oxidation
 - Diffusion rates in air >> water

Metals Management Strategies

- Sometimes anoxia hurts
 - Sacramento channel dredging placement ponds
 - Methylmercury concentrations rose and remained high 4 weeks + until site dried out
 - Methylmercury production highest in site with excess vegetation fueling methylation
 - Impact to river minimized by preventing water release during period of high methylmercury

Metals Management

- Containment
 - Montezuma Project constructed low conductivity levees around contaminated sediments placed
 - Below mean low tide, minimize risk of channel incision
 - Monitoring wells around contaminated sediments

Take Home

- Moving sediments from anoxic to oxic environments will lead to some mobilization
- Manageable through containment during activities
 - Keeping conditions stable minimize further mobilization
 - Physical containment can prevent wider transport